
Department of Computer Engineering

SENIOR DESIGN PROJECT

Photonom

Low Level Design Report

Group Members Omer Faruk Babademez 21601216
Idil Hanhan 21601289
Beyza Kalkanli 21600944
Berfin Kucuk 21502396
Kerem Yilmaz 21601223

Supervisor Asst. Prof. Hamdi Dibeklioğlu

Jury Members Prof. Ozcan Ozturk
Assoc. Prof. Selim Aksoy

Innovation Expert Mehmet Surav

Low Level Design Report
Feb 17, 2019
This report is submitted to the Department of Computer Engineering of Bilkent University in partial fulfilment of the
requirements of the Senior Design Project course CS491/2.

Contents

1 Introduction 2

1.1 Object design trade-offs . 2
1.1.1 Understandability vs. Complexity . 2
1.1.2 Portability vs. Development Time . 3
1.1.3 Response Time vs. Memory . 3
1.1.4 Security vs. Backup . 3

1.2 Interface documentation guidelines . 3
1.3 Engineering standards . 4
1.4 Definitions, acronyms, and abbreviations . 4

2 Packages 5

2.1 Client . 5
2.1.1 Presentation . 6

2.2 Server . 7
2.2.1 Modules . 9

3 Class Interfaces 11

3.1 Client . 11
3.1.1 Presentation . 11

3.2 Server . 17

4 Glossary 22

1

1 Introduction

Taking photos have turned into a daily practice, whether we are visiting a new country,
celebrating a birthday or just having a normal day. In fact it has been estimated that more
than 100 million photos and videos are uploaded to Instagram everyday [1]. Even though
this is an impressive number, it does not even include the number of photos that people take
for each upload. For some this number can be 20 and for other it might go up to 200 [2].
There are many reasons why one would have to take a lot of photos to get one shot they like.
The light does not look right in one of them, someone walked behind them in another one,
the building they want to be on the background did not fit the frame, they look too serious
in that one and so on. Taking more photos can be a possible solution, but in most cases
you might realise these problems when its too late. Going through your vacation photos to
realise that picture you took in front of a historical church is missing the tip of the church is
frustrating. Even if you do realise these problems when you have the chance to take more
photos, some things cannot be changed. If it is raining and water droplets are in your lens, it
is impossible to change the weather. And even if the problem is something you can change,
why waste time taking tons of photos when it is possible for you to enhance or modify the
ones you already have.
There are multiple tools that one can use to alter their photos. Advanced photoshop tools
are often too complicated for occasional use. It is possible to find a tool that will remove a
background item and then another one to alter your head position and/or facial expression
and then find a filter in another app that reflects your style. In this case, it is not common
to find all these features in one place and the users have to jump from one app to another
to get what they want.
With Photonom, we are proposing a mobile application that will allow users to modify their
photos interactively and in one place whilst conserving the true nature of the image itself.
In the next section, Photonom will be described in more detail and constraints related to it
will be explained. Then both the functional and nonfunctional requirements of Photonom
will be explained. The references can be seen at the end of this report.

1.1 Object design trade-offs

1.1.1 Understandability vs. Complexity

Our application is designed with the aim of providing users an opportunity to complete
their edits with only one application. In order to achieve this purpose we included multiple

2

functionalities during the design process. However, it might be problematic for users to learn
the use of all of the functionalities at the beginning. In order to find the balance between
understandability and complexity, we limited the number of functionalities and added a user
manual to the application.

1.1.2 Portability vs. Development Time

In order to ensure that Photonom is easily portable and available in multiple platforms,
we decided to use Flutter framework which enables us to deploy the resulting product into
multiple platforms. Although we all have experiences with Android development, we decided
to continue with Flutter considering the trade off between the importance of portability and
the longer development time.

1.1.3 Response Time vs. Memory

Photonom is an app that will be used for photo editing. Therefore at various stages of the
app’s usage, the images selected/edited by the user will have to be processed. Both the
remote server and the user’s device can be used for this purpose. Using the user’s device will
ensure better response time but will also require some memory of the device to be used. With
the server we wouldn’t have to rely on the memory of the user’s device however the response
time might suffer. In order to create a balance, we have decided that simple processes will be
executed in the user’s device to ensure fast response and the rest will be send to the server.

1.1.4 Security vs. Backup

When users upload their photos to Photonom, or take their photos using Photonom, these
photos will persist in the server. Therefore it is crucial that we ensure our users personal data
is secure and ensure it is only used for operations they have given consent for. Therefore,
even though it would have been ideal for us to save every version of the photo by default,
we have decided to make security a priority and only save such information if the user has
given their permission.

1.2 Interface documentation guidelines

The table of interface documentation guideline are given in this section.

3

Table 1: Interface documentation guidelines
Class Class Name

Class description

Attributes

Attribute Attribute description

Methods

method(args) Method description

1.3 Engineering standards

We have used Unified Modelling Language (UML)[3] during the modelling of Photonom
through class, package, activity and sequence diagrams. We have used Institute of Electrical
and Electronics Engineers (IEEE) style [4] in citing references.

1.4 Definitions, acronyms, and abbreviations

• Object Removal: Tool of Photonom which can be used to remove an object from a
photo.

• Image Stitching: Tool of Photonom which can be used to stitch multiple photos to-
gether to make one photo.

• Face Expression Modifier: Tool of Photonom which can be used to modify the face
expression of a recognised face in the photo.

• Image Quality Evaluation: Tool of Photonom that evaluates selected photo(s) accord-
ing to both aesthetics and technical details.

• Style Transfer: Tool of Photonom that modifies a photo to match the style of a provided
style photo.

• Rain Removal: Tool of Photonom that removes the effects of rain from a photo.

• Head Position Modifier: Tool of Photonom which can be used to modify the head
position of a recognised face in the photo.

• Server: The system which processes the images sent to it according to specified tool.

4

• OpenFace: Python and Torch implementation of face recognition with deep neural
networks. It is used for face detection, face tracking and extraction of action units. [5]

• PyTorch: An open source machine learning library.

• GAN: Generative Adversarial Network. These networks create new instances based on
the training data.[6]

2 Packages

Photonom is formed by the interaction of two systems: the client and the server.

2.1 Client

The client can be used through devices that has Android or iOS operating system. The
client is the user interface layer of Photonom, where the user interact with his/her photos
and edit them. The client contains the presentation subsystem. The presentation subsystem
contains user interface elements for the user to interact with.

5

Figure 1: The hierarchy of modules inside the client system

2.1.1 Presentation

The presentation layer contains views and their event firing mechanisms.

Home: The first page that is seen when Photonom is opened. It contains options for
selecting a new photo or continuing from a saved one.

MainMenu: Creates the menu page for selecting between camera and gallery.

MainMenuState: Displays the menu page.

PhotoMenu: Creates the connections for tools and their respective page.

6

ToolSelection: Creates the page that includes all of the tools of Photonom.

ThemeTransfer: Creates the page for theme transfer tool.

QualityEvaluation: Creates the page for quality evaluation tool.

QualityEvaluationState: Displays the image to be evaluated and it’s score.

ImageStitching: Creates the page for image stitching tool.

ImageStitchingState: Displays the resulting image after the stitching operation is com-
pleted.

ObjectRemoval: Creates the page for object removal tool.

ObjectRemovalState: Displays the resulting image after object is removed.

RainHazeRemoval:Creates the page for rain and haze removal tool.

RainHazeRemovalState:Displays the resulting image after rain and/or haze is removed.

FaceExpression: Creates the page for face expression tool.

FaceExpressionState: Displays the resulting image after the face expression is modified.

HeadPose: Creates the page for head pose modification tool.

HeadPoseState: Displays the resulting image after the head pose is modified.

2.2 Server

All the processing happens in the server. An image with the required operations on that
image arrive as a request to the server. Then, the server processes the image with the given

7

modules and creates an output. The output is then sent back to the client as a response.
The server consists RequestHandler, ImageOperator and the Modules layer. The Modules
layer consists of 7 image operations such as image stitching and sytle transfer, etc.

Figure 2: The hierarchy of modules inside the server system

RequestHandler: Handles client request by turning them into tasks and runs them on
ImageOperator. Creates responses and sends them back to the client.

8

2.2.1 Modules

Module package contains the module used to edit the image(s).

ImageStitchingOperator: Stitches selected images into an image.

FaceExpressionOperator: Changes the expression of the selected face in the image.

QualityOperator: Evaluates the quality of the selected images.

StyleTransferOperator: Transfers the style of the secondly selected image to the first
image and returns a new image.

RainRemovalOperator: Removes rain drops from the image and returns the output image.

HeadPositionOperator: Modifies the head position of the selected face in the image.

ObjectRemovalOperator: Removes the selected object from the image and fills the back-
ground accordingly.

9

Figure 3: ImageOperator Package UML Diagram

10

3 Class Interfaces

The class interfaces of client, presentation, and server are given in this section.

3.1 Client

The interface documentation of classes in Client side are given below.

3.1.1 Presentation

The interface documentation of classes in Presentation package are given below.

Table 2: Home Class Interface
Class Home

Builds the home page

Attributes

None None

Methods

+Widget build() Builds the page

Table 3: MainMenu Class Interface
Class MainMenu

Builds camera and gallery selection page

Attributes

+String title Title of app

Methods

+_MainMenuState createState() Adds the camera and gallery buttons

11

Table 4: MainMenuState Class Interface
Class MainMenuState

Displays camera and gallery selection page

Attributes

None None

Methods

+Widget build() Displays the camera and gallery buttons

Table 5: PhotoMenu Class Interface
Class PhotoMenu

Creates background and connections for tools

Attributes

None None

Methods

+Widget build() Provides the connections

Table 6: ToolSelection Class Interface
Class ToolSelection

Builds the page that includes all tool option

Attributes

+Object selectedImage Image the user has selected for editing

Methods

+Widget build() Builds the page

12

Table 7: ThemeTransfer Class Interface
Class ThemeTransfer

Builds the page for the Theme Transfer tool

Attributes

-File themeImage Image whose theme will be transfered

+File originalImage Image the user has selected for editing

Methods

+Widget build() Builds the page

Table 8: QualityEvaluation Class Interface
Class QualityEvaluation

Creates the state page for quality evaluation

Attributes

+String title None

Methods

+_QualityEvaluationState createState() Creates the states

Table 9: QualityEvaluationState Class Interface
Class QualityEvaluationState

Shows the images and their scores

Attributes

-String evaluationScore Calculated score of the image

+List<Asset> images Images from camera or gallery

Methods

+Widget build() Gets the scores from the server and displays them

13

Table 10: ImageStitching Class Interface
Class ImageStitching

Builds the page for Image Stitching tool

Attributes

+File selfieImage Image the user has selected for editing

Methods

+ImageStitchingState createState()

Table 11: ImageStitchingState Class Interface

Class ImageStitchingState

Displays the resulting image after the stitching operation is completed

Attributes

+File selfieImage Image the user has selected for editing

+File panoromaImage Image that will be stitched to the initially selected image

+File resultImage The resulting image

Methods

+Widget build() Builds the page

Table 12: ObjectRemoval Class Interface
Class ObjectRemoval

Creates the state page for object removal

Attributes

+String title None

Methods

+_ObjectRemovalState createState() Creates the states

14

Table 13: ObjectRemovalState Class Interface

Class ObjectRemovalState

Shows the resulting images after object removal

Attributes

+File currentImage Image from camera or gallery

+List<File> resultingImages Images that are returned from the server

Methods

+Widget build() Gets the resulting images from the server and displays them

Table 14: RainHazeRemoval Class Interface

Class RainHazeRemoval

Creates the state page for rain and haze removal

Attributes

+String title None

Methods

+_RainHazeRemovalState createState() Creates the states

Table 15: RainHazeRemovalState Class Interface
Class RainHazeRemovalState

Shows the resulting image after rain/haze removal

Attributes

+File currentImage Image from camera or gallery

+File resultingImage Image that is returned from the server

Methods

+Widget build() Gets the resulting image from the server and displays it

15

Table 16: FaceExpression Class Interface

Class FaceExpression

Creates the state page for facial expression modification

Attributes

+String title None

Methods

+_FaceExpressionState createState() Creates the states

Table 17: FaceExpressionState Class Interface

Class FaceExpressionState

Shows the resulting image after facial expression modification

Attributes

+File currentImage Image from camera or gallery

+List<File> resultingImages Images that are returned from the server

-int sliderCoefficient Smiling coefficient

Methods

+Widget build() Displays slider, gets slider coefficient,
gets the resulting image from the server and shows it

Table 18: HeadPose Class Interface
Class HeadPose

Creates the state page for head pose modification

Attributes

+String title None

Methods

+_HeadPoseState createState() Creates the states

16

Table 19: HeadPoseState Class Interface
Class HeadPoseState

Shows the resulting image after head pose modification

Attributes

+File currentImage Image from camera or gallery

+List<File> resultingImages Images that are returned from the server

-int angle Pose coefficient

Methods

+Widget build() Displays sphere, gets pose coefficient,
gets the resulting image from the server and shows it

3.2 Server

The interface documentation of classes in Server side are given below.

17

Table 20: ImageOperator Class Interface

Class ImageOperator

Executor class for applying operations

Attributes

-List<ImageOperation> operations List of operations supported by Photonom

-List<int> executionOrder The order in which operations will be handled

-ImageOperationLog history An ImageOperationLog that contains all of
the changes made by the user

Methods

+void applyAllOperation() Apply all of the operations according to the order
specified in executionOrder

+void applyOperation(int idx) Applys the operation indicated by the given id

+void addOperation(ImageOperation io) Adds a new operation to Photonom

+List<int> getOrder() Get the order of execution.

+void setOrder(List<int> newOrder) Set the execution order

+List<int> getRecommendedOrder() Get the recommended order,
meaning the default order of execution

18

Table 21: ImageOperation Class Interface

Class ImageOperation

Represents an operation with its parameters

Attributes

-int id Id of the operation ranging from 1 to 7.

-Map kwargs Arguments necessary for image operation

-List<String> requiredFields The necessary fields that must be in kwargs

-Map defaultValues The default values for arguments of the image operation

-String endpoint URL to the one of the servers endpoints where the operation
for the operation will be sent to.

-ImageOperator preprocessingSteps Operations that should be applied before the actual operation

Methods

+void applyForRange(Map) Applies operation with given range of input values

+void resetArgs() Reset the arguments of the operation.

+void updateArgs(Map) Update the arguments of the operation.

+void setRecommendedArgs() Set the arguments of the operation to default values.

Table 22: ImageApplicable Class Interface

Class ImageApplicable

Interface for anything that can be applied to an image

Attributes

-ImageResource inputImage Input image

-List<ImageResource> outputImages Output images

Methods

+void applyOperation() Operation definition

19

Table 23: ImageResource Class Interface
Class ImageResource

Represents an image

Attributes

-String inputImage Location of the image.

-image data The image itself

Methods

+ImageResource retrieveImage(location) Gets the image from the given location

+String getLocation() Returns the location of the image

+image getData() Returns the matrix of the image

Table 24: ImageOperationLog Class Interface

Class ImageOperationLog

Holds an action log for an image

Attributes

-int id Id of the image operation

-boolean finalized Whether editing of the image is completed

Methods

+int getID() Gets the id of the image operator

+void update(ImageOperator io) Update the log to include the latest image operation

+void setFinalised(boolean state) Updates the finalised attribute according to given state

+boolean isFinalized() Checks if editing of the image is finalized.

20

Table 25: TreeRepresentable Class Interface

Class TreeRepresentable

Interface for anything that can be represented in a tree
structure

Attributes

-OperationTree operationTree A tree that stores operations and their order

Methods

+OperationTree getRepresentation() Returns a representation of the tree

Table 26: OperationTree Class Interface
Class OperationTree

Data structure for representing the life of an image

Attributes

-OperationNode head Head node

Methods

+OperationNode getHead() Returns head node

+void setHead(OperationNode) Updates the head

Table 27: OperationNode Class Interface
Class OperationNode

Represents an operation in OperationTree

Attributes

-OperationNode parent Parent node

-List<OperationNode> children Children nodes

-ImageOperation data Related operation object

Methods

+void setData(ImageOperation) Sets data attribute

+void insertChild(ImageOperation) Inserts an operation as a child

+List<ImageOperation> getChildren() Returns all children nodes

21

4 Glossary

Photonom: A word derived from the merging of two words: photoshop and autonom.

22

References

[1] “Instagram by the numbers (2019): Stats, demographics fun facts,” 2019. [Online].
Available: https://www.omnicoreagency.com/instagram-statistics/

[2] J. Brucculieri, “4 instagrammers show us how many photos they took before nailing ’the
shot’,” 2018. [Online]. Available: https://www.huffpost.com/entry/instagramphoto-
camerarolls_n_5ac4ed48e4b063ce2e58131f

[3] “Unified modeling language,” 2020. [Online]. Available: https://www.uml.org/

[4] “How to cite references: Ieee documentation style,” 2020. [Online]. Available:
https://ieee-
dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf

[5] “Openface,” 2019. [Online]. Available: https://cmusatyalab.github.io/openface/

[6] “Introduction | generative adversarial networks,” 2019. [Online]. Available:
https://developers.google.com/machine-learning/gan

23

